Photonic metamaterials: a new class of materials for manipulating light waves

Sci Technol Adv Mater. 2012 Nov 8;13(5):053002. doi: 10.1088/1468-6996/13/5/053002. eCollection 2012 Oct.

Abstract

A decade of research on metamaterials (MMs) has yielded great progress in artificial electromagnetic materials in a wide frequency range from microwave to optical frequencies. This review outlines the achievements in photonic MMs that can efficiently manipulate light waves from near-ultraviolet to near-infrared in subwavelength dimensions. One of the key concepts of MMs is effective refractive index, realizing values that have not been obtained in ordinary solid materials. In addition to the high and low refractive indices, negative refractive indices have been reported in some photonic MMs. In anisotropic photonic MMs of high-contrast refractive indices, the polarization and phase of plane light waves were efficiently transformed in a well-designed manner, enabling remarkable miniaturization of linear optical devices such as polarizers, wave plates and circular dichroic devices. Another feature of photonic MMs is the possibility of unusual light propagation, paving the way for a new subfield of transfer optics. MM lenses having super-resolution and cloaking effects were introduced by exploiting novel light-propagating modes. Here, we present a new approach to describing photonic MMs definitely by resolving the electromagnetic eigenmodes. Two representative photonic MMs are addressed: the so-called fishnet MM slabs, which are known to have effective negative refractive index, and a three-dimensional MM based on a multilayer of a metal and an insulator. In these photonic MMs, we elucidate the underlying eigenmodes that induce unusual light propagations. Based on the progress of photonic MMs, the future potential and direction are discussed.

Keywords: metamaterials; subwavelength optical devices.

Publication types

  • Review