Molecular Insight into Affinities of Gallated and Nongallated Proanthocyanidins Dimers to Lipid Bilayers

Sci Rep. 2016 Nov 22:6:37680. doi: 10.1038/srep37680.

Abstract

Experimental studies have proved the beneficial effects of proanthocyanidins (Pas) relating to interaction with the cell membrane. But the detailed mechanisms and structure-function relationship was unclear. In present study, molecular dynamics (MD) simulations were used to study the interactions of four PA dimers with a lipid bilayer composed of 1:1 mixed 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) and 1-palmitoyl-2-oleoyl phosphatidylethanolamine (POPE). The results showed that the gallated PA dimers had much higher affinities to the bilayer with lower binding free energies compared with nongallated PA dimers. The gallated PA dimers penetrated deeper into the bilayer and formed more hydrogen bonds (H-bonds) with bilayer oxygen atoms, especially the deeper oxygen atoms of the lipids simultaneously, thus inducing stronger lateral expansion of the membrane and lipid tails disorder. The present results provided molecular insights into the interactions between PA dimers and bio-membranes and agreed with our experimental results well. These molecular interactions helped to elucidate the structure-function relationship of the PA dimers and provided a foundation for a better understanding of the underlying mechanisms of the bioactivities of PA oligomers.

Publication types

  • Research Support, Non-U.S. Gov't