Synthesis of Optically Active Poly(diphenylacetylene)s Using Polymer Reactions and an Evaluation of Their Chiral Recognition Abilities as Chiral Stationary Phases for HPLC

Molecules. 2016 Nov 7;21(11):1487. doi: 10.3390/molecules21111487.

Abstract

A series of optically active poly(diphenylacetylene) derivatives bearing a chiral substituent (poly-2S) or chiral and achiral substituents (poly-(2Sx-co-31-x)) on all of their pendant phenyl rings were synthesized by the reaction of poly(bis(4-carboxyphenyl)acetylene) with (S)-1-phenylethylamine ((S)-2) or benzylamine (3) in the presence of a condensing reagent. Their chiroptical properties and chiral recognition abilities as chiral stationary phases (CSPs) for high-performance liquid chromatography (HPLC) were investigated. Poly-2S and poly-(2Sx-co-31-x) (0.06 < x < 0.71) formed a preferred-handed helical conformation with opposite helical senses after thermal annealing despite possessing the same chiral pendant (h-poly-2S and h-poly-(2Sx-co-31-x)). Furthermore, h-poly-2S and h-poly-(2S0.36-co-30.64) emitted circularly polarized luminescence with opposite signs. h-Poly-2S showed higher chiral recognition abilities toward a larger number of racemates than poly-2S without a preferred-handed helicity and the previously reported preferred-handed poly(diphenylacetylene) derivative bearing the same chiral substituent on half of its pendant phenyl rings. h-Poly-(2S0.36-co-30.64) also exhibited good chiral recognition abilities toward several racemates, though the elution order of some enantiomers was reversed compared with h-poly-2S.

Keywords: chiral stationary phase; enantioseparation; helix; helix inversion; high-performance liquid chromatography (HPLC); poly(diphenylacetylene).

MeSH terms

  • Alkynes / chemical synthesis*
  • Alkynes / chemistry
  • Chromatography, High Pressure Liquid
  • Molecular Structure
  • Structure-Activity Relationship

Substances

  • Alkynes