Type I interferon suppresses virus-specific B cell responses by modulating CD8+ T cell differentiation

Sci Immunol. 2016 Oct;1(4):eaah3565. doi: 10.1126/sciimmunol.aah3565. Epub 2016 Oct 21.

Abstract

Studies have established a role for T cells in resolving persistent viral infections, yet emerging evidence indicates that both T and B cells are required to control some viruses. During persistent infection, a marked lag or failure to generate neutralizing antibodies is commonly observed and likely contributes to an inability to control certain pathogens. Using lymphocytic choriomeningitis virus (LCMV) as a model, we have examined how a persistent viral infection can suppress neutralizing humoral immunity. By tracking the fate of virus-specific B cells in vivo, we report that LCMV-specific B cells were rapidly deleted within a few days of persistent infection, and this deletion was completely reversed by blockade of type I interferon (IFN-I) signaling. Early interference with IFN-I signaling promoted survival and differentiation of LCMV-specific B cells, which accelerated the generation of neutralizing antibodies. This marked improvement in antiviral humoral immunity did not rely on the cessation of IFN-I signaling in B cells but on alterations in the virus-specific CD8+ T cell response. Using two-photon microscopy and in vivo calcium imaging, we observed that cytotoxic T lymphocytes (CTLs) productively engaged and killed LCMV-specific B cells in a perforin-dependent manner within the first few days of infection. Blockade of IFN-I signaling protected LCMV-specific B cells by promoting CTL dysfunction. Therapeutic manipulation of this pathway may facilitate efforts to promote humoral immunity during persistent viral infection in humans. Our findings illustrate how events that occur early after infection can disturb the resultant adaptive response and contribute to viral persistence.