Self-Assembly of AB Diblock Copolymer Confined in a Soft Nano-Droplet: A Combination Study by Monte Carlo Simulation and Experiment

J Phys Chem B. 2016 Nov 23;120(46):12023-12029. doi: 10.1021/acs.jpcb.6b10170. Epub 2016 Nov 15.

Abstract

The self-assembly of AB-type diblock copolymers confined in a three-dimensional (3D) soft nanodroplet is investigated by the combination of Monte Carlo simulation and experiment. The influences of two critical factors, i.e., confinement degree of the imposed confinement space and the interfacial interaction between each individual block and boundary interface, on the 3D soft confined self-assembly are examined systematically. The simulation results reveal that block copolymer chains become more and more folded as the confinement degree (it can be monitored by the ratio of D/L, where L is the length of polymer chain and D is the reduced diameter of the final polymeric particle) is enhanced, causing a series of morphological transitions. Based on the simulation prediction, we perform the corresponding experiments by the 3D confined self-assembly of both symmetric and asymmetric block copolymers within the emulsion droplets. The experimental results well reproduce the confinement degree induced morphological transitions predicted by the simulations, such as the transition from segmented pupa-like particle to hamburger particle and the transition from raspberry-like particle to triangle-like particle, and then to hamburger particle. The current study implies that self-assembled nanostructures under 3D soft confinement can be simply controlled by tuning the confinement degree and interfacial property, i.e., the ratio of D/L and the interfacial interaction between each individual block and boundary interface.

Publication types

  • Research Support, Non-U.S. Gov't