An ultrahigh volumetric capacitance of squeezable three-dimensional bicontinuous nanoporous graphene

Nanoscale. 2016 Nov 3;8(43):18551-18557. doi: 10.1039/c5nr08852f.

Abstract

Graphene with a large specific surface area and high conductivity has a large specific capacitance. However, its volumetric capacitance is usually very low because the restacking of 2D graphene sheets leads to the loss of the large ion-accessible surface area. Here we report squeezable bicontinuous nanoporous nitrogen-doped graphene, which is extremely flexible and can tolerate large volume contraction by mechanical compression without the face-to-face restacking occurring. The compressed nanoporous N-doped graphene with a large ion accessible surface area and high conductivity shows an ultrahigh volumetric capacitance of ∼300 F cm-3 together with excellent cycling stability and high rate performance.