Estimation of breathing rate in thermal imaging videos: a pilot study on healthy human subjects

J Clin Monit Comput. 2017 Dec;31(6):1241-1254. doi: 10.1007/s10877-016-9949-y. Epub 2016 Oct 24.

Abstract

Diverse studies have demonstrated the importance of monitoring breathing rate (BR). Commonly, changes in BR are one of the earliest and major markers of serious complications/illness. However, it is frequently neglected due to limitations of clinically established measurement techniques, which require attachment of sensors. The employment of adhesive pads or thoracic belts in preterm infants as well as in traumatized or burned patients is an additional paramount issue. The present paper proposes a new robust approach, based on data fusion, to remotely monitor BR using infrared thermography (IRT). The algorithm considers not only temperature modulation around mouth and nostrils but also the movements of both shoulders. The data of these four sensors/regions of interest need to be further fused to reach improved accuracy. To investigate the performance of our approach, two different experiments (phase A: normal breathing, phase B: simulation of breathing disorders) on twelve healthy volunteers were performed. Thoracic effort (piezoplethysmography) was simultaneously acquired to validate our results. Excellent agreements between BR estimated with IRT and gold standard were achieved. While in phase A a mean correlation of 0.98 and a root-mean-square error (RMSE) of 0.28 bpm was reached, in phase B the mean correlation and the RMSE hovered around 0.95 and 3.45 bpm, respectively. The higher RMSE in phase B results predominantly from delays between IRT and gold standard in BR transitions: eupnea/apnea, apnea/tachypnea etc. Moreover, this study also demonstrates the capability of IRT to capture varied breathing disorders, and consecutively, to assess respiratory function. In summary, IRT might be a promising monitoring alternative to the conventional contact-based techniques regarding its performance and remarkable capabilities.

Keywords: Breathing disorders; Data fusion; Physiological monitoring; Respiratory rate; Thermal imaging.

MeSH terms

  • Algorithms
  • Bayes Theorem
  • Female
  • Healthy Volunteers
  • Humans
  • Male
  • Models, Biological
  • Models, Statistical
  • Monitoring, Physiologic / methods*
  • Movement
  • Pilot Projects
  • Respiration*
  • Respiratory Rate*
  • Signal Processing, Computer-Assisted*
  • Video Recording