The Sensing Properties of Single Y-Doped SnO2 Nanobelt Device to Acetone

Nanoscale Res Lett. 2016 Dec;11(1):470. doi: 10.1186/s11671-016-1685-1. Epub 2016 Oct 21.

Abstract

Pure SnO2 and Y-doped SnO2 nanobelts were prepared by thermal evaporation at 1350 °C in the presence of Ar carrier gas (30 sccm). The samples were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersion spectrometer (EDS), X-ray photoelectron spectrometer (XPS), UV-Vis absorption spectroscopy, Raman spectroscopy, and Fourier transform infrared spectrum (FTIR). The sensing properties of the devices based on a single SnO2 nanobelt and Y-doped SnO2 nanobelt were explored to acetone, ethanol, and ethanediol. It reveals that the sensitivity of single Y-doped SnO2 nanobelt device is 11.4 to 100 ppm of acetone at 210 °C, which is the highest response among the three tested VOC gases. Y3+ ions improve the sensitivity of SnO2 sensor and have an influence on the optical properties of Y-doped SnO2 nanobelts.

Keywords: Acetone; Gas sensor; Optical properties; SnO2 nanobelts; Y3+ doping.