Small versus Large Iron Oxide Magnetic Nanoparticles: Hyperthermia and Cell Uptake Properties

Molecules. 2016 Oct 13;21(10):1357. doi: 10.3390/molecules21101357.

Abstract

Efficient use of magnetic hyperthermia in clinical cancer treatment requires biocompatible magnetic nanoparticles (MNPs), with improved heating capabilities. Small (~34 nm) and large (~270 nm) Fe₃O₄-MNPs were synthesized by means of a polyol method in polyethylene-glycol (PEG) and ethylene-glycol (EG), respectively. They were systematically investigated by means of X-ray diffraction, transmission electron microscopy and vibration sample magnetometry. Hyperthermia measurements showed that Specific Absorption Rate (SAR) dependence on the external alternating magnetic field amplitude (up to 65 kA/m, 355 kHz) presented a sigmoidal shape, with remarkable SAR saturation values of ~1400 W/gMNP for the small monocrystalline MNPs and only 400 W/gMNP for the large polycrystalline MNPs, in water. SAR values were slightly reduced in cell culture media, but decreased one order of magnitude in highly viscous PEG1000. Toxicity assays performed on four cell lines revealed almost no toxicity for the small MNPs and a very small level of toxicity for the large MNPs, up to a concentration of 0.2 mg/mL. Cellular uptake experiments revealed that both MNPs penetrated the cells through endocytosis, in a time dependent manner and escaped the endosomes with a faster kinetics for large MNPs. Biodegradation of large MNPs inside cells involved an all-or-nothing mechanism.

Keywords: biodegradation; cancer cells uptake; endocytosis; large magnetic nanoparticles; magnetic hyperthermia; polyethylene glycol; polyhedral iron oxide magnetic nanoparticles; specific absorption rate.

MeSH terms

  • Adsorption
  • Animals
  • Cell Line
  • Cell Survival / drug effects
  • Ethylene Glycol / chemistry
  • Ferric Compounds / chemistry
  • Ferric Compounds / pharmacokinetics*
  • Humans
  • Hyperthermia, Induced / methods*
  • Magnetic Fields
  • Magnetite Nanoparticles / chemistry*
  • Mice
  • Microscopy, Electron, Transmission
  • Particle Size*
  • Polyethylene Glycols / chemistry
  • X-Ray Diffraction

Substances

  • Ferric Compounds
  • Magnetite Nanoparticles
  • ferric oxide
  • Polyethylene Glycols
  • Ethylene Glycol