Heat and Mass Transfer of the Droplet Vacuum Freezing Process Based on the Diffusion-controlled Evaporation and Phase Transition Mechanism

Sci Rep. 2016 Oct 14:6:35324. doi: 10.1038/srep35324.

Abstract

A frozen phase transition model is developed to investigate the heat and mass transfer of a single water droplet during the vacuum freezing process. The model is based on the diffusion-controlled evaporation mechanism and phase transition characteristics. The droplet vacuum freezing process can be divided into three stages according to the droplet states and the time order. It includes the evaporation freezing stage, the isothermal freezing stage and the sublimation freezing stage. A numerical calculation is performed, and the result is analysed. The effects of the vacuum chamber pressure, initial droplet diameter and initial droplet temperature on the heat and mass transfer characteristics at each stage are studied. The droplet experiences supercooling breakdown at the end of the evaporation freezing stage before the isothermal freezing stage begins. The temperature is transiently raised as a result of the supercooling breakdown phenomenon, whose effects on the freezing process and freezing parameters are considered.

Publication types

  • Research Support, Non-U.S. Gov't