Selection of an Appropriate Protein Extraction Method to Study the Phosphoproteome of Maize Photosynthetic Tissue

PLoS One. 2016 Oct 11;11(10):e0164387. doi: 10.1371/journal.pone.0164387. eCollection 2016.

Abstract

Often plant tissues are recalcitrant and, due to that, methods relying on protein precipitation, such as TCA/acetone precipitation and phenol extraction, are usually the methods of choice for protein extraction in plant proteomic studies. However, the addition of precipitation steps to protein extraction methods may negatively impact protein recovery, due to problems associated with protein re-solubilization. Moreover, we show that when working with non-recalcitrant plant tissues, such as young maize leaves, protein extraction methods with precipitation steps compromise the maintenance of some labile post-translational modifications (PTMs), such as phosphorylation. Therefore, a critical issue when studying PTMs in plant proteins is to ensure that the protein extraction method is the most appropriate, both at qualitative and quantitative levels. In this work, we compared five methods for protein extraction of the C4-photosynthesis related proteins, in the tip of fully expanded third-leaves. These included: TCA/Acetone Precipitation; Phenol Extraction; TCA/Acetone Precipitation followed by Phenol Extraction; direct extraction in Lysis Buffer (a urea-based buffer); and direct extraction in Lysis Buffer followed by Cleanup with a commercial kit. Protein extraction in Lysis Buffer performed better in comparison to the other methods. It gave one of the highest protein yields, good coverage of the extracted proteome and phosphoproteome, high reproducibility, and little protein degradation. This was also the easiest and fastest method, warranting minimal sample handling. We also show that this method is adequate for the successful extraction of key enzymes of the C4-photosynthetic metabolism, such as PEPC, PPDK, PEPCK, and NADP-ME. This was confirmed by MALDI-TOF/TOF MS analysis of excised spots of 2DE analyses of the extracted protein pools. Staining for phosphorylated proteins in 2DE revealed the presence of several phosphorylated isoforms of PEPC, PPDK, and PEPCK.

MeSH terms

  • Acetone / chemistry
  • Electrophoresis, Gel, Two-Dimensional
  • Liquid-Liquid Extraction
  • Phenols / chemistry
  • Phosphopeptides / analysis*
  • Phosphopeptides / isolation & purification
  • Photosynthesis
  • Plant Leaves / metabolism
  • Plant Proteins / chemistry
  • Plant Proteins / metabolism*
  • Principal Component Analysis
  • Protein Processing, Post-Translational
  • Proteome / analysis*
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  • Trichloroacetic Acid / chemistry
  • Urea / chemistry
  • Zea mays / metabolism*

Substances

  • Phenols
  • Phosphopeptides
  • Plant Proteins
  • Proteome
  • Acetone
  • Trichloroacetic Acid
  • Urea

Grants and funding

Fundação para a Ciência e Tecnologia (FCT, http://www.fct.pt) supported IML (PD/BD/113982/2015), BMA (SFRH/BPD/98619/2013), and IAA (FCT Investigator, financed by POPH (QREN)). Work was supported by the Research unit GREEN-it "Bioresources for Sustainability" (UID/Multi/04551/2013, http://www.itqb.unl.pt/green-it); and 3to4 (FP7-KBBE-2011-5, Collaborative Project n.289582, http://www.3to4.org). The funding agencies had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.