Spin-torque generator engineered by natural oxidation of Cu

Nat Commun. 2016 Oct 11:7:13069. doi: 10.1038/ncomms13069.

Abstract

The spin Hall effect is a spin-orbit coupling phenomenon, which enables electric generation and detection of spin currents. This relativistic effect provides a way for realizing efficient spintronic devices based on electric manipulation of magnetization through spin torque. However, it has been believed that heavy metals are indispensable for the spin-torque generation. Here we show that the spin Hall effect in Cu, a light metal with weak spin-orbit coupling, is significantly enhanced through natural oxidation. We demonstrate that the spin-torque generation efficiency of a Cu/Ni81Fe19 bilayer is enhanced by over two orders of magnitude by tuning the surface oxidation, reaching the efficiency of Pt/ferromagnetic metal bilayers. This finding illustrates a crucial role of oxidation in the spin Hall effect, opening a route for engineering the spin-torque generator by oxygen control and manipulating magnetization without using heavy metals.

Publication types

  • Research Support, Non-U.S. Gov't