Novel interaction between CCR4 and CAF1 in rice CCR4-NOT deadenylase complex

Plant Mol Biol. 2017 Jan;93(1-2):79-96. doi: 10.1007/s11103-016-0548-6. Epub 2016 Oct 6.

Abstract

Rice is an important crop in the world. However, little is known about rice mRNA deadenylation, which is an important regulation step of gene expression at the post-transcriptional level. The CCR4-NOT1 complex contains two key components, CCR4 and CAF1, which are the main cytoplasmic deadenylases in eukaryotic cells. In yeast and humans, CCR4 can interact with CAF1 via its N-terminal LRR domain. However, no CCR4 protein containing N-terminal LRR motifs have been found in plants. In this manuscript, we demonstrate a novel pattern of interaction between OsCCR4 and OsCAF1 in the rice CCR4-NOT complex, and that OsCAF1 acts as a bridge between OsCCR4 and OsNOT1 in this complex. Our results revealed that the Mynd-like domain at the N-terminus of rice CCR4 proteins and the PXLXP motif at the rice CAF1 N-terminus play critical roles in OsCCR4-OsCAF1 interaction. Deadenylation, also called poly(A) tail shortening, is the first rate-limiting step in general cytoplasmic mRNA degradation in eukaryotic cells. Carbon catabolite repressor (CCR)4 and CCR4-associated factor (CAF)1 in the CCR4-NOT complex function in mRNA poly(A) tail shortening. CCR4s contain N-terminal leucine-rich repeat (LRR) motifs that interact with CAF1s in yeast, fruit fly and mammals. In silico analysis has not identified any plant CCR4 proteins that contain LRR motifs. Here, two rice CCR4 homologous genes, OsCCR4a and OsCCR4b, were identified. The isolated recombinant exonuclease-endonuclease-phosphatase domain of OsCCR4a and OsCCR4b exhibited 3'-5' exonuclease activity in vitro, and point mutation of a catalytic residue in this domain disrupted the deadenylase activity. Both OsCCR4a and OsCCR4b fluorescent fusion proteins were localized in the rice cytoplasm and nucleus, and both associated with processing bodies via their N-terminus. Binding analyses showed that OsCCR4a and OsCCR4b directly interacted with three rice CAF1 family members: OsCAF1A, OsCAF1G and OsCAF1H. The zf-MYND-like domain at the N terminus of rice CCR4 and the PXLXP motif of rice CAF1 play critical roles in OsCCR4-OsCAF1 interaction. OsCAF1 proteins, but not OsCCR4 proteins, can interact with the MIG4G domain of rice OsNOT1. Our studies thus reveal a hitherto undiscovered novel interaction pattern that connects OsCCR4 and OsCAF1 in the rice CCR4-NOT complex.

Keywords: CCR4-associated factor 1; CCR4–NOT complex; Carbon catabolite repressor 4; Deadenylation; Oryza sativa; Poly(A) tail; Rice.

MeSH terms

  • Exoribonucleases / chemistry*
  • Exoribonucleases / genetics
  • Exoribonucleases / metabolism
  • Oryza / genetics*
  • Phylogeny
  • Plant Proteins / chemistry*
  • Plant Proteins / genetics
  • Plant Proteins / metabolism
  • Protein Interaction Domains and Motifs*
  • RNA Processing, Post-Transcriptional*
  • Sequence Alignment
  • Sequence Analysis, Protein
  • Two-Hybrid System Techniques
  • beta-Galactosidase / analysis

Substances

  • Plant Proteins
  • Exoribonucleases
  • beta-Galactosidase