Multi-parameter analysis using photovoltaic cell-based optofluidic cytometer

Biomed Opt Express. 2016 Aug 22;7(9):3585-3595. doi: 10.1364/BOE.7.003585. eCollection 2016 Sep 1.

Abstract

A multi-parameter optofluidic cytometer based on two low-cost commercial photovoltaic cells and an avalanche photodetector is proposed. The optofluidic cytometer is fabricated on a polydimethylsiloxane (PDMS) substrate and is capable of detecting side scattered (SSC), extinction (EXT) and fluorescence (FL) signals simultaneously using a free-space light transmission technique without the need for on-chip optical waveguides. The feasibility of the proposed device is demonstrated by detecting fluorescent-labeled polystyrene beads with sizes of 3 μm, 5 μm and 10 μm, respectively, and label-free beads with a size of 7.26 μm. The detection experiments are performed using both single-bead population samples and mixed-bead population samples. The detection results obtained using the SSC/EXT, EXT/FL and SSC/FL signals are compared with those obtained using a commercial flow cytometer. It is shown that the optofluidic cytometer achieves a high detection accuracy for both single-bead population samples and mixed-bead population samples. Consequently, the proposed device provides a versatile, straightforward and low-cost solution for a wide variety of point-of-care (PoC) cytometry applications.

Keywords: (120.5820) Scattering measurements; (130.3120) Integrated optics devices; (170.0170) Medical optics and biotechnology; (230.3990) Micro-optical devices; (300.2530) Fluorescence, laser-induced.