Susceptibility of Grapholita molesta (Busck, 1916) to formulations of Bacillus thuringiensis, individual toxins and their mixtures

J Invertebr Pathol. 2016 Nov:141:1-5. doi: 10.1016/j.jip.2016.09.006. Epub 2016 Sep 26.

Abstract

The Oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae), is a major pest of fruit trees worldwide, such as peach and apple. Bacillus thuringiensis has been shown to be an efficient alternative to synthetic insecticides in the control of many agricultural pests. The objective of this study was to evaluate the effectiveness of B. thuringiensis individual toxins and their mixtures for the control of G. molesta. Bioassays were performed with Cry1Aa, Cry1Ac, Cry1Ca, Vip3Aa, Vip3Af and Vip3Ca, as well as with the commercial products DiPel® and XenTari®. The most active proteins were Vip3Aa and Cry1Aa, with LC50 values of 1.8 and 7.5ng/cm2, respectively. Vip3Ca was nontoxic to this insect species. Among the commercial products, DiPel® was slightly, but significantly, more toxic than XenTari®, with LC50 values of 13 and 33ng commercial product/cm2, respectively. Since Vip3A and Cry1 proteins are expressed together in some insect-resistant crops, we evaluated possible synergistic or antagonistic interactions among them. The results showed moderate to high antagonism in the combinations of Vip3Aa with Cry1Aa and Cry1Ca.

Keywords: Antagonism; Cry proteins; Oriental fruit moth; Tortricidae; Vip3 proteins.

MeSH terms

  • Animals
  • Bacillus thuringiensis Toxins
  • Bacterial Proteins / pharmacology*
  • Endotoxins / pharmacology*
  • Hemolysin Proteins / pharmacology*
  • Insecticides / pharmacology*
  • Moths / drug effects*
  • Pest Control, Biological / methods*

Substances

  • Bacillus thuringiensis Toxins
  • Bacterial Proteins
  • Endotoxins
  • Hemolysin Proteins
  • Insecticides
  • Vip3A protein, Bacillus thuringiensis
  • insecticidal crystal protein, Bacillus Thuringiensis