A synthetic three-dimensional niche system facilitates generation of functional hematopoietic cells from human-induced pluripotent stem cells

J Hematol Oncol. 2016 Sep 29;9(1):102. doi: 10.1186/s13045-016-0326-6.

Abstract

Background: The efficient generation of hematopoietic stem cells (HSCs) from human-induced pluripotent stem cells (iPSCs) holds great promise in personalized transplantation therapies. However, the derivation of functional and transplantable HSCs from iPSCs has had very limited success thus far.

Methods: We developed a synthetic 3D hematopoietic niche system comprising nanofibers seeded with bone marrow (BM)-derived stromal cells and growth factors to induce functional hematopoietic cells from human iPSCs in vitro.

Results: Approximately 70 % of human CD34+ hematopoietic cells accompanied with CD43+ progenitor cells could be derived from this 3D induction system. Colony-forming-unit (CFU) assay showed that iPSC-derived CD34+ cells formed all types of hematopoietic colonies including CFU-GEMM. TAL-1 and MIXL1, critical transcription factors associated with hematopoietic development, were expressed during the differentiation process. Furthermore, iPSC-derived hematopoietic cells gave rise to both lymphoid and myeloid lineages in the recipient NOD/SCID mice after transplantation.

Conclusions: Our study underscores the importance of a synthetic 3D niche system for the derivation of transplantable hematopoietic cells from human iPSCs in vitro thereby establishing a foundation towards utilization of human iPSC-derived HSCs for transplantation therapies in the clinic.

Keywords: Hematopoietic stem cells; Induced pluripotent stem cells; Niche; Three dimension; Transplantation.