Strain Modal Analysis of Small and Light Pipes Using Distributed Fibre Bragg Grating Sensors

Sensors (Basel). 2016 Sep 25;16(10):1583. doi: 10.3390/s16101583.

Abstract

Vibration fatigue failure is a critical problem of hydraulic pipes under severe working conditions. Strain modal testing of small and light pipes is a good option for dynamic characteristic evaluation, structural health monitoring and damage identification. Unique features such as small size, light weight, and high multiplexing capability enable Fibre Bragg Grating (FBG) sensors to measure structural dynamic responses where sensor size and placement are critical. In this paper, experimental strain modal analysis of pipes using distributed FBG sensors ispresented. Strain modal analysis and parameter identification methods are introduced. Experimental strain modal testing and finite element analysis for a cantilever pipe have been carried out. The analysis results indicate that the natural frequencies and strain mode shapes of the tested pipe acquired by FBG sensors are in good agreement with the results obtained by a reference accelerometer and simulation outputs. The strain modal parameters of a hydraulic pipe were obtained by the proposed strain modal testing method. FBG sensors have been shown to be useful in the experimental strain modal analysis of small and light pipes in mechanical, aeronautic and aerospace applications.

Keywords: Fibre Bragg Grating; small and light pipe; strain modal analysis; strain mode shape.