New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine

Chem Rev. 2016 Oct 12;116(19):12234-12327. doi: 10.1021/acs.chemrev.6b00290. Epub 2016 Sep 22.

Abstract

This review summarizes recent progress in the design and applications of cadmium-free quantum dots (Cd-free QDs), with an emphasis on their role in biophotonics and nanomedicine. We first present the features of Cd-free QDs and describe the physics and emergent optical properties of various types of Cd-free QDs whose applications are discussed in subsequent sections. Selected specific QD systems are introduced, followed by the preparation of these Cd-free QDs in a form useful for biological applications, including recent advances in achieving high photoluminescence quantum yield (PL QY) and tunability of emission color. Next, we summarize biophotonic applications of Cd-free QDs in optical imaging, photoacoustic imaging, sensing, optical tracking, and photothermal therapy. Research advances in the use of Cd-free QDs for nanomedicine applications are discussed, including drug/gene delivery, protein/peptide delivery, image-guided surgery, diagnostics, and medical devices. The review then considers the pharmacokinetics and biodistribution of Cd-free QDs and summarizes current studies on the in vitro and in vivo toxicity of Cd-free QDs. Finally, we provide perspectives on the overall current status, challenges, and future directions in this field.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biocompatible Materials / chemical synthesis
  • Biocompatible Materials / chemistry
  • Biocompatible Materials / pharmacokinetics
  • Biocompatible Materials / toxicity
  • Graphite / chemistry
  • Metalloids / chemistry
  • Metals, Heavy / chemistry
  • Nanomedicine
  • Optics and Photonics
  • Particle Size
  • Quantum Dots / chemistry*
  • Quantum Dots / toxicity

Substances

  • Biocompatible Materials
  • Metalloids
  • Metals, Heavy
  • Graphite