Mepivacaine attenuates vasodilation induced by ATP-sensitive potassium channels in rat aorta

Can J Physiol Pharmacol. 2016 Nov;94(11):1211-1219. doi: 10.1139/cjpp-2016-0041. Epub 2016 Jul 5.

Abstract

The goal of this in vitro study was to investigate the effect of mepivacaine on vasodilation induced by the ATP-sensitive potassium (KATP) channel opener levcromakalim in isolated endothelium-denuded rat aortas. The effects of mepivacaine and the KATP channel inhibitor glibenclamide, alone or in combination, on levcromakalim-induced vasodilation were assessed in the isolated aortas. The effects of mepivacaine or combined treatment with a protein kinase C (PKC) inhibitor, GF109203X, and mepivacaine on this vasodilation were also investigated. Levcromakalim concentration-response curves were generated for isolated aortas precontracted with phenylephrine or a PKC activator, phorbol 12,13-dibutyrate (PDBu). Further, the effects of mepivacaine and glibenclamide on levcromakalim-induced hyperpolarization were assessed in rat aortic vascular smooth muscle cells. Mepivacaine attenuated levcromakalim-induced vasodilation, whereas it had no effect on this vasodilation in isolated aortas pretreated with glibenclamide. Combined treatment with GF109203X and mepivacaine enhanced levcromakalim-induced vasodilation compared with pretreatment with mepivacaine alone. This vasodilation was attenuated in aortas precontracted with PDBu compared with those precontracted with phenylephrine. Mepivacaine and glibenclamide, alone or in combination, attenuated levcromakalim-induced membrane hyperpolarization. Taken together, these results suggest that mepivacaine attenuates vasodilation induced by KATP channels, which appears to be partly mediated by PKC.

Keywords: GF109203X; KATP channel; aorta; aorte; canal KATP; glibenclamide; levcromakalim; mepivacaine; mépivacaïne; protein kinase C; protéine kinase C.