Comparative proteomics reveal distinct chaperone-client interactions in supporting bacterial acid resistance

Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):10872-7. doi: 10.1073/pnas.1606360113. Epub 2016 Sep 12.

Abstract

HdeA and HdeB constitute the essential chaperone system that functions in the unique periplasmic space of Gram-negative enteric bacteria to confer acid resistance. How this two-chaperone machinery cooperates to protect a broad range of client proteins from acid denaturation while avoiding nonspecific binding during bacterial passage through the highly acidic human stomach remains unclear. We have developed a comparative proteomic strategy that combines the genetically encoded releasable protein photocross-linker with 2D difference gel electrophoresis, which allows an unbiased side-by-side comparison of the entire client pools from these two acid-activated chaperones in Escherichia coli Our results reveal distinct client specificities between HdeA and HdeB in vivo that are determined mainly by their different responses to pH stimulus. The intracellular acidity serves as an environmental cue to determine the folding status of both chaperones and their clients, enabling specific chaperone-client binding and release under defined pH conditions. This cooperative and synergistic mode of action provides an efficient, economical, flexible, and finely tuned protein quality control strategy for coping with acid stress.

Keywords: 2D-DIGE; bacteria acid resistance; comparative proteomics; conditionally disordered chaperones; photocross-linking.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acids / pharmacology*
  • Cross-Linking Reagents / chemistry
  • Electrophoresis, Gel, Two-Dimensional
  • Escherichia coli / drug effects
  • Escherichia coli / metabolism*
  • Escherichia coli Proteins / metabolism
  • Hydrogen-Ion Concentration
  • Light
  • Molecular Chaperones / metabolism*
  • Protein Structure, Secondary
  • Proteomics / methods*
  • Stress, Physiological / drug effects
  • Tandem Mass Spectrometry

Substances

  • Acids
  • Cross-Linking Reagents
  • Escherichia coli Proteins
  • Molecular Chaperones
  • hdeA protein, E coli
  • hdeB protein, E coli