Angiogenic Rg1 /Sr-Doped TiO2 Nanowire/Poly(Propylene Fumarate) Bone Cement Composites

Macromol Biosci. 2017 Feb;17(2). doi: 10.1002/mabi.201600156. Epub 2016 Sep 12.

Abstract

A new approach is provided for preparing radiopaque and angiogenic poly(propylene fumarate) (PPF) bone cements by integrating Sr-doped n-TiO2 nanowires and ginsenoside Rg1 suitable for treating osteonecrosis. High aspect ratio radiopaque TiO2 -nanowires are synthesized by strontium doping in supercritical CO2 for the first time, showing a new phase, SrTiO3 . PPF is synthesized using a transesterification method by reacting diethyl fumarate and propylene glycol, then functionalized using maleic anhydride to produce terminal carboxyl groups, which are subsequently linked to the nanowires. The strong interfacial adhesion between functionalized PPF and nanowires is examined by scanning electron microscopy, Fourier transform infrared, X-ray photoelectron spectroscopy, thermal analysis, and mechanical testing. An angiogenic modulator, ginsenoside Rg1 , is integrated into the bone cement formulation with the mechanical properties, radiopacity, drug release, and angiogenesis behavior of the formed composites explored. The results show superior radiopacity and excellent release of ginsenoside Rg1 in vitro, as well as a dose-dependent increase in the branching point numbers. The present study suggests this new methodology provides sufficient mechanical properties, radiopacity, and angiogenic activity to be suitable for cementation of necrotic bone.

Keywords: angiogenesis; bone cement; ginsenoside Rg1; nanowire; radiopacity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bone Cements / pharmacology*
  • Carbon Dioxide / chemistry
  • Drug Liberation
  • Elastic Modulus / drug effects
  • Fumarates / chemical synthesis
  • Fumarates / chemistry
  • Fumarates / pharmacology*
  • Ginsenosides / pharmacology*
  • Human Umbilical Vein Endothelial Cells / drug effects
  • Human Umbilical Vein Endothelial Cells / metabolism
  • Humans
  • Materials Testing
  • Nanocomposites / chemistry*
  • Nanocomposites / ultrastructure
  • Nanowires / chemistry*
  • Nanowires / ultrastructure
  • Neovascularization, Physiologic / drug effects*
  • Photoelectron Spectroscopy
  • Polypropylenes / chemical synthesis
  • Polypropylenes / chemistry
  • Polypropylenes / pharmacology*
  • Spectrometry, X-Ray Emission
  • Spectroscopy, Fourier Transform Infrared
  • Strontium / pharmacology*
  • Titanium / pharmacology*

Substances

  • Bone Cements
  • Fumarates
  • Ginsenosides
  • Polypropylenes
  • poly(propylene fumarate)
  • Carbon Dioxide
  • titanium dioxide
  • Titanium
  • ginsenoside Rg1
  • Strontium