Climate change in Lagos state, Nigeria: what really changed?

Environ Monit Assess. 2015 Oct;188(10):556. doi: 10.1007/s10661-016-5549-z. Epub 2016 Sep 9.

Abstract

Our study revealed periodicities of 2.3 and 2.25 years in wet and dry seasons and periodicities of 2 to 5 years on seasonal and annual timescales. Minimum temperature (Tmin), maximum temperature (Tmax) and evaporation recorded increases of 2.47, 1.37 and 28.37 %, respectively, but a reduction of 19.58 % in rainfall on decadal timescale. Periodicity of 8 to 12 years was also observed in annual Tmax. Cramer's test indicated a warming trend with significant Tmax increase in February, April, July, August, October and November during 2000-2009 on decadal monthly timescale, a significant decline in Summer rainfall but significant Tmax increase in Spring, Autumn and Winter on decadal seasonal timescale. The low correlation of rainfall with temperature parameters and evaporation indicates that advection of moisture into Lagos State seems to be the dominant mechanism controlling rainfall within the State alongside other tropical and extra-tropical factors. In addition, our study revealed that the persistent state of minimum temperature often precedes the arrival and reversal of the phase of maximum temperature. Furthermore, our study also revealed that extreme and high variable rainfalls, which are associated with the increased warming trend, had periodicities of 1 to 3 years with a probability of 86.45 % of occurring every 3 years between April and September. It is recommended that government and private sector should give financial and technical supports to climate researches in order to appropriately inform policy making to improve the adaptive capacity and resilience of Lagos State against climate change impacts and guard against maladaptation.

Keywords: Climate; Lagos state; Maximum temperature; Minimum temperature; Rainfall; Timescale.

MeSH terms

  • Climate Change*
  • Climate*
  • Environmental Monitoring*
  • Nigeria
  • Periodicity*
  • Rain
  • Seasons
  • Temperature