A ladder coordination polymer based on Ca(2+) and (4,5-dicyano-1,2-phenylene)bis(phosphonic acid): crystal structure and solution-state NMR study

Acta Crystallogr C Struct Chem. 2016 Sep 1;72(Pt 9):685-91. doi: 10.1107/S2053229616012328. Epub 2016 Aug 25.

Abstract

The preparation of coordination polymers (CPs) based on either transition metal centres or rare-earth cations has grown considerably in recent decades. The different coordination chemistry of these metals allied to the use of a large variety of organic linkers has led to an amazing structural diversity. Most of these compounds are based on carboxylic acids or nitrogen-containing ligands. More recently, a wide range of molecules containing phosphonic acid groups have been reported. For the particular case of Ca(2+)-based CPs, some interesting functional materials have been reported. A novel one-dimensional Ca(2+)-based coordination polymer with a new organic linker, namely poly[[diaqua[μ4-(4,5-dicyano-1,2-phenylene)bis(phosphonato)][μ3-(4,5-dicyano-1,2-phenylene)bis(phosphonato)]dicalcium(II)] tetrahydrate], {[Ca2(C8H4N2O6P2)2(H2O)2]·4H2O}n, has been prepared at ambient temperature. The crystal structure features one-dimensional ladder-like ∞(1)[Ca2(H2cpp)2(H2O)2] polymers [H2cpp is (4,5-dicyano-1,2-phenylene)bis(phosphonate)], which are created by two distinct coordination modes of the anionic H2cpp(2-) cyanophosphonate organic linkers: while one molecule is only bound to Ca(2+) cations via the phosphonate groups, the other establishes an extra single connection via a cyano group. Ladders close pack with water molecules through an extensive network of strong and highly directional O-H...O and O-H...N hydrogen bonds; the observed donor-acceptor distances range from 2.499 (5) to 3.004 (6) Å and the interaction angles were found in the range 135-178°. One water molecule was found to be disordered over three distinct crystallographic positions. A detailed solution-state NMR study of the organic linker is also provided.

Keywords: bis(phosphonic acid) ligand; calcium; crystal structure; ladder coordination polymer; solution-state NMR study.