Using Eu(3+) as an atomic probe to investigate the local environment in LaPO4-GdPO4 monazite end-members

J Colloid Interface Sci. 2016 Dec 1:483:139-145. doi: 10.1016/j.jcis.2016.08.027. Epub 2016 Aug 11.

Abstract

In the present study, we have investigated the luminescent properties of Eu(3+) as a dopant in a series of synthetic lanthanide phosphates from the monazite group. Systematic trends in the spectroscopic properties of Eu(3+) depending on the size of the host cation and the dopant to ligand distance have been observed. Our results show that the increasing match between host and dopant radii when going from Eu(3+)-doped LaPO4 toward the smaller GdPO4 monazite decreases both the full width at half maximum of the Eu(3+) excitation peak, as well as the (7)F2/(7)F1 emission band intensity ratio. The decreasing Ln⋯O bond distance within the LnPO4 series causes a systematic bathochromic shift of the Eu(3+) excitation peak, showing a linear dependence of both the host cation size and the Ln⋯O distance. The linear relationship can be used to predict the energy band gap for Eu(3+)-doped monazites for which no Eu(3+) luminescent data is available. Finally, mechanisms for metal-metal energy transfer between host and dopant lanthanides have been explored based on recorded luminescence lifetime data. Luminescence lifetime data for Eu(3+) incorporated in the various monazite hosts clearly indicated that the energy band gap between the guest ion emission transition and the host ion absorption transition can be correlated to the degree of quenching observed in these materials with otherwise identical geometries and chemistries.

Keywords: Eu(3+); Incorporation; Luminescence; Monazite; Quenching; TRLFS.