Investigating the role of a poorly soluble surfactant in a thermally driven 2D microfoam

Soft Matter. 2016 Aug 17;12(33):7056-62. doi: 10.1039/c6sm00686h.

Abstract

Foam drainage dynamics is known to be strongly affected by the nature of the surfactants stabilising the liquid/gas interface. In the present work, we consider a 2D microfoam stabilized by both soluble (sodium dodecylsulfate) and poorly soluble (dodecanol) surfactants. The drainage dynamics is driven by a thermocapillary Marangoni stress at the liquid/gas interface [V. Miralles et al., Phys. Rev. Lett., 2014, 112, 238302] and the presence of dodecanol at the interface induces interface stress acting against the applied thermocapillary stress, which slows down the drainage dynamics. We define a damping parameter that we measure as a function of the geometrical characteristics of the foam. We compare it with predictions based on the interface rheological properties of the solution.