Structural basis of arginine asymmetrical dimethylation by PRMT6

Biochem J. 2016 Oct 1;473(19):3049-63. doi: 10.1042/BCJ20160537. Epub 2016 Aug 1.

Abstract

PRMT6 is a type I protein arginine methyltransferase, generating the asymmetric dimethylarginine mark on proteins such as histone H3R2. Asymmetric dimethylation of histone H3R2 by PRMT6 acts as a repressive mark that antagonizes trimethylation of H3 lysine 4 by the MLL histone H3K4 methyltransferase. PRMT6 is overexpressed in several cancer types, including prostate, bladder and lung cancers; therefore, it is of great interest to develop potent and selective inhibitors for PRMT6. Here, we report the synthesis of a potent bisubstrate inhibitor GMS [6'-methyleneamine sinefungin, an analog of sinefungin (SNF)], and the crystal structures of human PRMT6 in complex, respectively, with S-adenosyl-L-homocysteine (SAH) and the bisubstrate inhibitor GMS that shed light on the significantly improved inhibition effect of GMS on methylation activity of PRMT6 compared with SAH and an S-adenosyl-L-methionine competitive methyltransferase inhibitor SNF. In addition, we also crystallized PRMT6 in complex with SAH and a short arginine-containing peptide. Based on the structural information here and available in the PDB database, we proposed a mechanism that can rationalize the distinctive arginine methylation product specificity of different types of arginine methyltransferases and pinpoint the structural determinant of such a specificity.

Keywords: PRMT6; arginine methyltransferase; bisubstrate inhibitor.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Amino Acid Sequence
  • Arginine / metabolism*
  • Cloning, Molecular
  • Crystallography, X-Ray
  • Humans
  • Methylation
  • Nuclear Proteins / chemistry
  • Nuclear Proteins / genetics
  • Nuclear Proteins / metabolism*
  • Protein Conformation
  • Protein-Arginine N-Methyltransferases / chemistry
  • Protein-Arginine N-Methyltransferases / genetics
  • Protein-Arginine N-Methyltransferases / metabolism*
  • Sequence Homology, Amino Acid

Substances

  • Nuclear Proteins
  • Arginine
  • PRMT6 protein, human
  • Protein-Arginine N-Methyltransferases