Sound speed as a proxy variable to temperature in Fram Strait

J Acoust Soc Am. 2016 Jul;140(1):622. doi: 10.1121/1.4959000.

Abstract

The application of ocean acoustic tomography in Fram Strait requires a careful assessment of the accuracy to which estimates of sound speed from tomography can be converted to estimates of temperature. The Fram Strait environment is turbulent, with warm, salty, northward-flowing North Atlantic water interacting with cold, fresh, southward-flowing Arctic water. The nature of this environment suggests that salinity could play an important role with respect to sound speed. The properties of sound speed with respect to temperature and salinity in this environment were examined using climatological and in situ glider data. In cold water, a factor of about 4.5 m s(-1) °C(-1) can be used to scale between sound speed and temperature. In situ data obtained by gliders were used to determine the ambiguities between temperature, salinity, and sound speed. Tomography provides a depth-averaging measurement. While errors in the sound speed-temperature conversion at particular depths may be 0.2 °C or larger, particularly within 50 m of the surface, such errors are suppressed when the depth is averaged. Using a simple scale factor to compute temperature from sound speed introduced an error of about 20 m °C for depth-averaged temperature, a value less than formal uncertainties estimated from acoustic tomography.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't