Gastrodin ameliorates spinal cord injury via antioxidant and anti-inflammatory effects

Acta Biochim Pol. 2016;63(3):589-93. doi: 10.18388/abp.2016_1272. Epub 2016 Jul 30.

Abstract

Spinal cord injury (SCI) is one of the most severe traumatic injuries that results in dysfunction of limbs and trunk below the damaged section. Recent studies have shown that gastrodin (GAS) could improve the recovery of SCI. In the current study, we aimed to examine the possible mechanism underlying the effect of GAS on recovery of SCI in rats. In rats with SCI, GAS improved locomotor functions and decreased permeability of blood-spinal cord barrier, as illustrated by increase of Basso-Beattie-Bresnahan scores and decrease of Evans blue leakage. In addition, GAS inhibited inflammation, as evidenced by decrease of proinflammatory cytokines, including tumor necrosis factor α (TNFα) and interleukin-1β (IL-1β) in rats following SCI. Moreover, increase of TBARS content and decrease of glutathione (GSH) content and superoxide dismutase (SOD) activities in SCI rats were inhibited by GAS. Furthermore, GAS enhanced mRNA expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), catalytic subunit of γ-glutamylcysteine ligase (GCLc) and modified subunit of γ-glutamylcysteine ligase (GCLm). The data suggested that GAS may promote the recovery of SCI through the enhancement of Nrf2-GCLc/GCLm signaling pathway, and subsequent improvement of oxidative stress and inflammation, resulting in decrease of permeability of BSCB and improved recovery of locomotor function in rats with SCI. The results have provided novel insights into GAS-related therapy of SCI and associated neurodegenerative diseases.

MeSH terms

  • Animals
  • Anti-Inflammatory Agents / pharmacology*
  • Antioxidants / pharmacology*
  • Benzyl Alcohols / pharmacology*
  • Blood-Brain Barrier / drug effects
  • Drug Evaluation, Preclinical
  • Glucosides / pharmacology*
  • Male
  • Neuroprotective Agents / pharmacology*
  • Oxidative Stress / drug effects
  • Permeability
  • Rats, Sprague-Dawley
  • Recovery of Function / drug effects
  • Spinal Cord Injuries / drug therapy*
  • Spinal Cord Injuries / immunology

Substances

  • Anti-Inflammatory Agents
  • Antioxidants
  • Benzyl Alcohols
  • Glucosides
  • Neuroprotective Agents
  • gastrodin