Semiconductor plasmonic nanolasers: current status and perspectives

Rep Prog Phys. 2016 Aug;79(8):086501. doi: 10.1088/0034-4885/79/8/086501. Epub 2016 Jul 26.

Abstract

Scaling down semiconductor lasers in all three dimensions holds the key to the development of compact, low-threshold, and ultrafast coherent light sources, as well as integrated optoelectronic and plasmonic circuits. However, the minimum size of conventional semiconductor lasers utilizing dielectric cavity resonators (photonic cavities) is limited by the diffraction limit. To date, surface plasmon amplification by stimulated emission of radiation (spaser)-based plasmonic nanolaser is the only photon and plasmon-emitting device capable of this remarkable feat. Specifically, it has been experimentally demonstrated that the use of plasmonic cavities based on metal-insulator-semiconductor (MIS) nanostructures can indeed break the diffraction limit in all three dimensions. In this review, we present an updated overview of the current status for plasmonic nanolasers using the MIS configuration and other related metal-cladded semiconductor microlasers. In particular, by using composition-varied indium gallium nitride/gallium nitride core-shell nanorods, it is possible to realize all-color, single-mode nanolasers in the full visible wavelength range with ultralow continuous-wave (CW) lasing thresholds. The lasing action in these subdiffraction plasmonic cavities is achieved via a unique auto-tuning mechanism based on the property of weak size dependence inherent in plasmonic nanolasers. As for the choice of metals in the plasmonic structures, epitaxial silver films and giant colloidal silver crystals have been shown to be the superior constituent materials for plasmonic cavities due to their low plasmonic losses in the visible and near-infrared (NIR) spectral regions. In this review, we also provide some perspectives on the challenges and opportunities in this exciting new research frontier.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.