Adipose Stromal Cells from Visceral and Subcutaneous Fat Facilitate Migration of Ovarian Cancer Cells via IL-6/JAK2/STAT3 Pathway

Cancer Res Treat. 2017 Apr;49(2):338-349. doi: 10.4143/crt.2016.175. Epub 2016 Jul 18.

Abstract

Purpose: Adipose stromal cells (ASCs) play an important regulatory role in cancer progression and metastasis by regulating systemic inflammation and tissue metabolism. This study examined whether visceral and subcutaneous ASCs (V- and S-ASCs) facilitate the growth and migration of ovarian cancer cells.

Materials and methods: CD45- and CD31- double-negative ASCs were isolated from the subcutaneous and visceral fat using magnetic-activated cell sorting. Ovarian cancer cells were cultured in conditioned media (CM) obtained from ASCs to determine the cancer-promoting effects of ASCs. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, Boyden chamber assay, and western blotting were performed to determine the proliferative activity, migration ability, and activation of the JAK2/STAT3 pathway, respectively.

Results: CM from ASCs enhanced the migration of the ovarian cancer line, SKOV3, via activation of the JAK2/STAT3 signaling pathway. Interestingly, in response to ASC-CM, the ascites cells derived from an ovarian cancer patient showed an increase in growth and migration. The migration of ovarian cancer cells was suppressed by blocking the activation of JAK2 and STAT3 using a neutralizing antibody against interleukin 6, small molecular inhibitors (e.g., WP1066 and TG101348), and silencing of STAT3 using siRNA. Anatomical differences between S- and V-ASCs did not affect the growth and migration of the ovarian cancer cell line and ascites cells from the ovarian cancer patients.

Conclusion: ASCs may regulate the progression of ovarian cancer, and possibly provide a potential target for anticancer therapy.

Keywords: Adipose stromal cells; Adipose tissue; Cell movement; Interleukin-6; Ovarian neoplasms.

MeSH terms

  • Abdominal Fat / cytology*
  • Biomarkers
  • Cell Communication*
  • Cell Differentiation
  • Cell Line, Tumor
  • Cell Movement
  • Cell Proliferation / drug effects
  • Cells, Cultured
  • Female
  • Humans
  • Immunophenotyping
  • Interleukin-6 / metabolism*
  • Janus Kinase 2 / metabolism*
  • Ovarian Neoplasms / metabolism*
  • Ovarian Neoplasms / pathology
  • Phenotype
  • Pyridines / pharmacology
  • STAT3 Transcription Factor / metabolism*
  • Signal Transduction* / drug effects
  • Stromal Cells / cytology
  • Stromal Cells / metabolism*
  • Tyrphostins / pharmacology

Substances

  • Biomarkers
  • Interleukin-6
  • Pyridines
  • STAT3 Transcription Factor
  • Tyrphostins
  • WP1066
  • JAK2 protein, human
  • Janus Kinase 2