Hyperspherical coupled channel calculations of energy and structure of (4)He-(4)He-Li(+) and its isotopic combinations

J Chem Phys. 2016 Jul 21;145(3):034304. doi: 10.1063/1.4955445.

Abstract

The ground state vibrational energy and spatial features of (4)He-(4)He-Li(+) and its triatomic isotopic complexes are studied using the slow variable discretization (SVD) method in the hyperspherical coordinates for the zero total angular momentum. Our results show that the dominant structure of the system is an isosceles triangle with the shorter side associated with the two Li(+)-He distances using the sum-of-potential approximation. Corrections caused by the induced dipole-induced dipole interactions on the He atoms are also investigated. The effects are seen to be small and have a minor influence on the binding energy and the structure of present system. The results are also compared with the full ab initio calculations including all the three-body interactions and information of three-body corrections is obtained.