Facile Fabrication of a Gold Nanocluster-Based Membrane for the Detection of Hydrogen Peroxide

Sensors (Basel). 2016 Jul 20;16(7):1124. doi: 10.3390/s16071124.

Abstract

In this work, we present a simple and rapid method to synthesize red luminescent gold nanoclusters (AuNCs) with high quantum yield (QY, ~16%), excellent photostability and biocompatibility. Next, we fabricated a solid membrane by loading the as-prepared AuNCs in an agar matrix. Different from nanomaterials dispersed in solution, the AuNCs-based solid membrane has distinct advantages including convenience of transportation, while still maintaining strong red luminescence, and relatively long duration storage without aggregation. Taking hydrogen peroxide (H₂O₂) as a typical example, we then employed the AuNCs as a luminescent probe and investigated their sensing performance, either in solution phase or on a solid substrate. The detection of H₂O₂ could be achieved in wide concentration ranges over 805 nM-1.61 mM and 161 μM-19.32 mM in solution and on a solid membrane, respectively, with limits of detection (LOD) of 80 nM and 20 μM. Moreover, the AuNCs-based membrane could also be used for visual detection of H₂O₂ in the range of 0-3.22 mM. In view of the convenient synthesis route and attractive luminescent properties, the AuNCs-based membrane presented in this work is quite promising for applications such as optical sensing, fluorescent imaging, and photovoltaics.

Keywords: gold nanoclusters; hydrogen peroxide; luminescence; membrane.