Splicing variants of ADAR2 and ADAR2-mediated RNA editing in glioma

Oncol Lett. 2016 Aug;12(2):788-792. doi: 10.3892/ol.2016.4734. Epub 2016 Jun 15.

Abstract

The roles of alternative splicing and RNA editing in gene regulation and transcriptome diversity are well documented. Adenosine deaminases acting on RNA (ADARs) are responsible for adenosine-to-inosine (A-to-I) editing and exemplify the complex association between RNA editing and alternative splicing. The self-editing activity of ADAR2, which acts on its own pre-mRNA, leads to its alternative splicing. Alternative splicing occurs independently at nine splicing sites on ADAR2 pre-mRNA, generating numerous alternative splicing variants with various catalytic activities. A-to-I RNA editing is important in a range of physiological processes in humans and is associated with several diseases, including amyotrophic lateral sclerosis, mood disorders, epilepsy and glioma. Reduced editing at the glutamine/arginine site of the AMPA receptor subunit GluA2 in glioma, without any alteration in ADAR2 expression, is a notable phenomenon. Several studies have tried to explain this alteration in the catalytic activity of ADAR2; however, the underlying mechanism remains unclear. The present review summarizes the relevant literature and shares experimental results concerning ADAR2 alternative splicing. In particular, the present review demonstrates that shifts in the relative abundance of the active and inactive splicing variants of ADAR2 may reduce the ADAR2 editing activity in glioma. Dominant expression of ADAR2 splicing variant with low enzyme activity causes reduced RNA editing of GluA2 subunit at the glutamine/arginine site in glioma.

Keywords: ADAR2; RNA editing; alternative splicing; glioma; splicing variant.