Aldosterone induces NRK-52E cell apoptosis in acute kidney injury via rno-miR-203 hypermethylation and Kim-1 upregulation

Exp Ther Med. 2016 Aug;12(2):915-924. doi: 10.3892/etm.2016.3443. Epub 2016 Jun 8.

Abstract

Acute kidney injury (AKI) is characterized by an acute reduction in kidney function as identified by an increase in serum creatinine levels and reduction in urine output. Kidney injury molecule-1 (Kim-1) is a hallmark of kidney diseases, since it is typically non-detectable in the non-injured kidney, but upregulated and excreted in the urine during AKI. Aldosterone (Aldo) is a mediator of the renin-angiotensin-Aldo system with a pivotal role in the regulation of salt and extracellular fluid metabolism. In the present study, mice subjected to renal ischemia/reperfusion-induced AKI were investigated. The mice exhibited elevated levels of Aldo and angiotensin II, together with increased Kim-1 expression levels in renal tissue. Treatment of the mice with the Aldo receptor antagonist spironolactone decreased Kim-1 expression levels. These results suggest that Aldo may be associated with the expression of Kim-1 during AKI. However, the molecular mechanism underlying the role of Aldo in Kim-1 expression is unclear, and thus was investigated using NRK-52E cells. Aldo was found to induce the apoptosis of NRK-52E cells via the hypermethylation of rno-microRNA (miR)-203 and upregulation of Kim-1. In addition, luciferase reporter assays demonstrated that Kim-1 was a target gene of rno-miR-203 in NRK-52E cells. Furthermore, Aldo-induced NRK-52E cell apoptosis was reduced by treatment with pre-miR-203 and spironolactone to a greater extent when compared with either alone. The results may provide a promising diagnostic marker or novel therapeutic target for AKI.

Keywords: acute kidney injury; aldosterone; hypermethylation; kidney injury molecule-1; rno-miR-203.