Wingbeat kinematics and energetics during weightlifting in hovering hummingbirds across an elevational gradient

J Comp Physiol B. 2017 Jan;187(1):165-182. doi: 10.1007/s00360-016-1016-y. Epub 2016 Jul 18.

Abstract

Hummingbirds differentially modify flight kinematics in response to the type of challenge imposed. Weightlifting is associated with increases in stroke amplitude (the angle swept by the wings) to increase the angular velocity of the wings and generate the requisite lift, but only up to 160°. Conversely, flight in hypodense air is accomplished by increasing the angular velocity of the wing through increases in wingbeat frequency and stroke amplitudes, with larger increases in amplitude than seen in weightlifting flight. The kinematic differences between these two challenges may be facilitated by the lower energetic costs associated with overcoming drag and inertial forces over the wing during hypodense flight. Thus, we hypothesized that energetic expenditure is what limits the kinematics of weightlifting flight, with lower air densities permitting increases in angular velocity at comparatively lower costs. To explore the kinematic and energetic effects of air density and weightlifting on hovering flight performance, video and respirometric recordings of weightlifting were performed on four species of hummingbirds across an elevational gradient. Contrary to our hypothesis, wingbeat frequency did not vary due to elevation. Instead, wingbeat frequency seems to increase depending on the power requirements for sustaining hovering flight. Furthermore, metabolic rates during hovering increased with angular velocity alone, independent of elevation. Thus, it appears that the differential responses to flight challenges are not driven by variation in the flight media.

Keywords: Elevation; Hovering; Hummingbirds; Kinematics; Load-lifting; Metabolism.

MeSH terms

  • Altitude
  • Animals
  • Biomechanical Phenomena
  • Birds / physiology*
  • Body Weight
  • Carbon Dioxide / metabolism
  • Energy Metabolism
  • Flight, Animal / physiology*
  • Male
  • Oxygen Consumption
  • Wings, Animal / physiology*

Substances

  • Carbon Dioxide