Optic Disc Localization Using Directional Models

IEEE Trans Image Process. 2016 Sep;25(9):4433-4442. doi: 10.1109/TIP.2016.2590838. Epub 2016 Jul 13.

Abstract

Reliable localization of the optic disc (OD) is important for retinal image analysis and ophthalmic pathology screening. This paper presents a novel method to automatically localize ODs in retinal fundus images based on directional models. According to the characteristics of retina vessel networks, such as their origin at the OD and parabolic shape of the main vessels, a global directional model, named the relaxed biparabola directional model, is first built. In this model, the main vessels are modeled by using two parabolas with a shared vertex and different parameters. Then, a local directional model, named the disc directional model, is built to characterize the local vessel convergence in the OD as well as the shape and the brightness of the OD. Finally, the global and the local directional models are integrated to form a hybrid directional model, which can exploit the advantages of the global and local models for highly accurate OD localization. The proposed method is evaluated on nine publicly available databases, and achieves an accuracy of 100% for each database, which demonstrates the effectiveness of the proposed OD localization method.