Angle-invariant imaging using a total internal reflection virtual aperture

Appl Opt. 2016 Jul 10;55(20):5345-52. doi: 10.1364/AO.55.005345.

Abstract

Conventional lens stops, implemented with an absorptive physical aperture, have an angle-dependent projection that introduces field dependent loss and reduces diffraction-limited resolution. Retro-telephoto lenses obtain uniform response using aberration vignetting, but this results in low wide-angle resolution and significant lens volume. However, an angle-independent "virtual" aperture can be created by total internal reflection (TIR) from a thin low index layer inside the lens. We apply this to monocentric wide-angle imaging and find a simple relationship between the filtering layer index and radius and the resulting lens F/#. We provide two detailed designs of lenses with 12 mm focal length and a F/2.5 TIR stop, one using a low index adhesive within a solid fixed-focus lens, the other using an air cavity within an adjustable focus lens. We show the designs provide absolutely uniform resolution and light collection over an angle range of 84° and 106°, respectively, resulting in a dramatic improvement of both light collection and angular resolution per unit volume over conventional wide-angle lenses.