Investigation on the Charge Loss Mechanisms of Nanoscale Charge Trap Non-Volatile Memory by Using Stretched Exponential Function

J Nanosci Nanotechnol. 2016 Jan;16(1):663-9. doi: 10.1166/jnn.2016.12075.

Abstract

Charge loss mechanisms of nanoscale charge trap non-volatile memory devices are carefully examined and studied. Fowler-Nordheim tunnelling mechanism is used to perform rapid program/erase cycling. Based on the good fit of post cycled and baked threshold voltage data to Stretched Exponential function, the lowest point and the peak of Vt distribution were found to evolve in a similar manner that resulted to similar derived Ea. The saturation behaviour of the threshold voltage decay can be predicted and validated through cells' threshold voltage measurements that fit well to Stretched Exponential function. The power law relationship of program/erase cycle count and the saturation behaviour was found to be similar on the device under study and NROM devices that utilizes significant different charge injection mechanisms for program/erase operation. The experimental results also demonstrated that charge injection mechanism is one of the dominant factors in determining the underlying charge loss mechanism. Moreover, the determination of charge loss mechanism depends on the total charges injected through the tunnel oxide layer of ONO stack in NB-CTNVM cell. Physical interpretation of the experimental findings of the dominant charge loss mechanism is deliberated in detail.