Supramolecular Recognition Induces Nonsynchronous Change of Dye Fluorescence Properties

J Org Chem. 2016 Aug 5;81(15):6587-95. doi: 10.1021/acs.joc.6b01230. Epub 2016 Jul 21.

Abstract

Fluorescence behavior of 8-anilino-1-naphthalenesulfonate (ANS) reflects a blue-shift and fluorescence enhancement on decreasing solvent polarity, with both properties affected in a synchronous way in solvent mixtures where ANS senses a homogeneous solvation shell. ANS complexation by cyclodextrins or bovine serum albumin (BSA) results in a nonhomogeneous solvation shell that is reflected by nonsynchronous variation of fluorescence properties. Steady-state fluorescence and saturation transfer difference NMR experiments allow us to conclude the formation of 1:1 and 2:1 host/guest complexes through the aniline or naphthalene moieties of ANS with cyclodextrins. This nonhomogeneous solvation shell has been ignored in studies using ANS to sense the microenvironment of proteins, micelles, bilayers, and other organized systems. ANS interaction with BSA reflects the existence of a large number of binding pockets in the surface of the protein that can be classified into two well-differentiated categories.

Publication types

  • Research Support, Non-U.S. Gov't