A Role for Timp3 in Microbiota-Driven Hepatic Steatosis and Metabolic Dysfunction

Cell Rep. 2016 Jul 19;16(3):731-43. doi: 10.1016/j.celrep.2016.06.027. Epub 2016 Jun 30.

Abstract

The effect of gut microbiota on obesity and insulin resistance is now recognized, but the underlying host-dependent mechanisms remain poorly undefined. We find that tissue inhibitor of metalloproteinase 3 knockout (Timp3(-/-)) mice fed a high-fat diet exhibit gut microbiota dysbiosis, an increase in branched chain and aromatic (BCAA) metabolites, liver steatosis, and an increase in circulating soluble IL-6 receptors (sIL6Rs). sIL6Rs can then activate inflammatory cells, such as CD11c(+) cells, which drive metabolic inflammation. Depleting the microbiota through antibiotic treatment significantly improves glucose tolerance, hepatic steatosis, and systemic inflammation, and neutralizing sIL6R signaling reduces inflammation, but only mildly impacts glucose tolerance. Collectively, our results suggest that gut microbiota is the primary driver of the observed metabolic dysfunction, which is mediated, in part, through IL-6 signaling. Our findings also identify an important role for Timp3 in mediating the effect of the microbiota in metabolic diseases.

MeSH terms

  • Animals
  • Diet, High-Fat / adverse effects
  • Dysbiosis / metabolism
  • Dysbiosis / pathology
  • Fatty Liver / metabolism*
  • Fatty Liver / microbiology
  • Fatty Liver / pathology*
  • Gastrointestinal Microbiome / physiology
  • Gastrointestinal Tract / metabolism
  • Gastrointestinal Tract / microbiology
  • Gastrointestinal Tract / pathology
  • Glucose / metabolism
  • Glucose Tolerance Test / methods
  • Inflammation / metabolism
  • Inflammation / microbiology
  • Inflammation / pathology
  • Insulin Resistance / physiology
  • Interleukin-6 / metabolism
  • Liver / metabolism
  • Liver / microbiology
  • Liver / pathology
  • Metabolic Diseases / metabolism*
  • Metabolic Diseases / microbiology
  • Metabolic Diseases / pathology*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Microbiota / physiology*
  • Obesity / metabolism
  • Obesity / pathology
  • Receptors, Interleukin-6 / metabolism
  • Signal Transduction / physiology
  • Tissue Inhibitor of Metalloproteinase-3 / metabolism*

Substances

  • Interleukin-6
  • Receptors, Interleukin-6
  • Tissue Inhibitor of Metalloproteinase-3
  • Glucose