Storage and Drainage Characteristics of a Highly Heterogeneous Karst Aquifer in Houzhai Basin

Ground Water. 2016 Nov;54(6):878-887. doi: 10.1111/gwat.12437. Epub 2016 Jun 29.

Abstract

The characteristics of karst aquifers are difficult to be determined due to their heterogeneous physical properties and lack of hydrogeological information. In this case study, we applied two methods for a comparative analysis of storage and drainage characteristics in upstream, midstream, and downstream of Houzhai cave stream basin. In the first method, Minimum Smoothed Method (MSM) is used to determine the proportion of baseflow to the total flow (Baseflow Index, BFI). In the second method, a bicarbonate-base two-end member mixing model is used to quantify the slow flow component and fast flow component. For both methods, slow flow and quick flow are quantified at three sampling sites, which provide useful information for the analysis of storage and drainage characteristics. The results from flow separation method and hydrogeochemical analysis show a consistently increasing trend of the proportion of slow flow to total flow from the upstream to downstream which indicates that the voids of highly conductive conduits and well-connected fissures decrease along the flow paths in the Houzhai cave stream basin in southwest China. The upstream areas have a low proportion of baseflow which indicates a high drainage capacity due to high permeable conduits and well-connected fissures. The downstream areas, on the contrary, have a high proportion of baseflow which indicates a high storage capacity and slow infiltration due to the predominant presence of matrix and poorly-connected fissures. These numerical methods provide alternative ways to investigate the storage and drainage characteristics of karst aquifers where direct measurement are not available.

Publication types

  • Case Reports

MeSH terms

  • China
  • Groundwater*
  • Water Movements*