Phase transitions and magnetic structures in MnW1-x Mo x O4 compounds (x ⩽ 0.2)

J Phys Condens Matter. 2016 Aug 24;28(33):336003. doi: 10.1088/0953-8984/28/33/336003. Epub 2016 Jun 28.

Abstract

Temperature-dependent specific heat, magnetization and neutron diffraction data have been collected in zero magnetic field for polycrystalline samples of MnW1-x Mo x O4 (x ⩽ 0.2) solid solution whose end-member MnWO4 exhibits a magnetoelectric multiferroic phase (AF2 phase) between T 1 ≈ 8 K and T 2 = 12.5 K. In MnW1-x Mo x O4, diamagnetic W(6+) are replaced with diamagnetic Mo(6+) cations and magnetic couplings among Mn(2+) (3d (5), S = 5/2) ions are modified due the doping-induced tuning of the orbital hybridization between Mn 3d and O 2p states. It was observed that magnetic phase transition temperatures which are associated with the second-order AF3-to-paramagnetic (T N) and AF2-to-AF3 (T 2) transitions in pure MnWO4 slightly increase with the Mo content x. Magnetic specific heat data also indicate that the first-order AF1-to-AF2 phase transition at T 1 survives a weak doping x ⩽ 0.05. This latter phase transition becomes invisible above the base temperature 2 K for higher level of doping x ⩾ 0.10. Neutron powder diffraction datasets collected above 1.5 K for a sample of MnW0.8Mo0.2O4 were analyzed using the Rietveld method. The magnetic structure below ≈ 14 K is a helical incommensurate spin order with a temperature-independent propagation vector k = (-0.217(6), 0.5, 0.466(4)). This cycloidal magnetic structure is similar to the polar AF2 structure observed in MnWO4. The AF1 up-up-down-down collinear spin arrangement observed in MnWO4 is absent in our MnW0.8Mo0.2O4 sample.