Temperature and moisture responses to carbon mineralization in the biochar-amended saline soil

Sci Total Environ. 2016 Nov 1:569-570:390-394. doi: 10.1016/j.scitotenv.2016.06.082. Epub 2016 Jun 25.

Abstract

This study assessed the effects of temperature and moisture on carbon mineralization (Cmin) in a saline soil system with biochar amendment. The dynamics of Cmin were monitored in a biochar-amended saline soil for 220days by incubation experiments under different conditions of temperature (15°C, 25°C and 35°C) and moisture (30%, 70% and 105% of the water-holding capacity). Results showed that as the incubation temperature rose, cumulative Cmin consistently increased in soil added with 0-4% biochar. The two-compartment model could well describe the dynamics of Cmin. The temperature rise increased the concentration of labile C in soil, but reduced the turnover time of labile and recalcitrant C pools and the value of temperature coefficient Q10. The response of Cmin to moisture was varying in soil amended with different levels of biochar. In the control treatment (soil alone), cumulative Cmin increased only when soil moisture was >105%. In the biochar treatments, however, 70% of water-holding capacity was optimal for Cmin, except for 2%-biochar treatment at 35°C. The findings highlight the necessity to consider the combined effects of soil moisture, temperature and the amount of biochar added for assessing Cmin in biochar-amended saline soils.

Keywords: Biochar; Carbon mineralization; Saline soil; Soil moisture; Temperature.