Efficacy of focal adhesion kinase inhibition in non-small cell lung cancer with oncogenically activated MAPK pathways

Br J Cancer. 2016 Jul 12;115(2):203-11. doi: 10.1038/bjc.2016.190. Epub 2016 Jun 23.

Abstract

Background: Focal adhesion kinase (FAK) is overexpressed in many types of tumours, including lung cancer. Y15, a small molecule which inhibits Y397 FAK autophosphorylation, decreases growth of human neuroblastoma, breast and pancreatic cancers. In this study, we investigated the in vitro and in vivo effects of Y15, and the underlying mechanism on non-small cell lung cancer cells.

Methods: The cytotoxic effects of Y15 targeting FAK signalling were evaluated. Gene-knockdown experiments were performed to determine the anti-cancer mechanism. Xenografts with RAS or EGFR mutations were selected for in vivo Y15 treatment.

Results: Y15 blocked autophosphorylation of FAK in a time- and dose-dependent manner. It caused dose-dependent decrease of lung cancer cell viability and clonogenicity. Y15 inhibited tumour growth of RAS-mutant (A549 with KRAS mutation and H1299 with NRAS mutation), as well as epidermal growth factor receptor (EGFR) mutant (H1650 and H1975) lung cancer xenografts. JNK activation is a mechanism underlying Y15-induced Bcl-2 and Mcl-1 downregulation. Moreover, knockdown of Bcl-2 or Bcl-xL potentiated the effects of Y15. The combination of various inhibitors of the Bcl-2 family of proteins with FAK inhibitors demonstrated synergy in multiple lung cancer cell lines in vitro.

Conclusions: FAK inhibition demonstrated efficacy both in vitro and in vivo in lung cancers with either oncogenic RAS or EGFR mutations. In addition, FAK inhibition in combination with inhibitors of Bcl-2 family of anti-apoptotic proteins has synergistic activity in these MAPK-activated non-small cell lung cancer cell line models.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Carcinoma, Non-Small-Cell Lung / enzymology*
  • Carcinoma, Non-Small-Cell Lung / pathology
  • Cell Line, Tumor
  • Dose-Response Relationship, Drug
  • Female
  • Focal Adhesion Protein-Tyrosine Kinases / antagonists & inhibitors*
  • Focal Adhesion Protein-Tyrosine Kinases / metabolism
  • Heterografts
  • Humans
  • Lung Neoplasms / enzymology*
  • Lung Neoplasms / pathology
  • MAP Kinase Signaling System*
  • Mice, SCID
  • Phosphorylation
  • Protein Kinase Inhibitors / pharmacology*

Substances

  • Protein Kinase Inhibitors
  • Focal Adhesion Protein-Tyrosine Kinases