Measuring microbial fitness in a field reciprocal transplant experiment

Mol Ecol Resour. 2017 May;17(3):370-380. doi: 10.1111/1755-0998.12562. Epub 2016 Jul 15.

Abstract

Microbial fitness is easy to measure in the laboratory, but difficult to measure in the field. Laboratory fitness assays make use of controlled conditions and genetically modified organisms, neither of which are available in the field. Among other applications, fitness assays can help researchers detect adaptation to different habitats or locations. We designed a competitive fitness assay to detect adaptation of Saccharomyces paradoxus isolates to the habitat they were isolated from (oak or larch leaf litter). The assay accurately measures relative fitness by tracking genotype frequency changes in the field using digital droplet PCR (DDPCR). We expected locally adapted S. paradoxus strains to increase in frequency over time when growing on the leaf litter type from which they were isolated. The DDPCR assay successfully detected fitness differences among S. paradoxus strains, but did not find a tendency for strains to be adapted to the habitat they were isolated from. Instead, we found that the natural alleles of the hexose transport gene we used to distinguish S. paradoxus strains had significant effects on fitness. The origin of a strain also affected its fitness: strains isolated from oak litter were generally fitter than strains from larch litter. Our results suggest that dispersal limitation and genetic drift shape S. paradoxus populations in the forest more than local selection does, although further research is needed to confirm this. Tracking genotype frequency changes using DDPCR is a practical and accurate microbial fitness assay for natural environments.

Keywords: dispersal; hexose transporter; local adaptation; population; relative fitness; yeast.

MeSH terms

  • Adaptation, Physiological
  • Ecosystem*
  • Genetic Drift
  • Genetic Fitness*
  • Genetics, Population*
  • Genotype
  • Saccharomyces / genetics*
  • Saccharomyces / physiology
  • Selection, Genetic

Associated data

  • GENBANK/KX266864
  • GENBANK/KX266865