Self-Produced Time Intervals Are Perceived as More Variable and/or Shorter Depending on Temporal Context in Subsecond and Suprasecond Ranges

Front Integr Neurosci. 2016 Jun 1:10:19. doi: 10.3389/fnint.2016.00019. eCollection 2016.

Abstract

The processing of time intervals is fundamental for sensorimotor and cognitive functions. Perceptual and motor timing are often performed concurrently (e.g., playing a musical instrument). Although previous studies have shown the influence of body movements on time perception, how we perceive self-produced time intervals has remained unclear. Furthermore, it has been suggested that the timing mechanisms are distinct for the sub- and suprasecond ranges. Here, we compared perceptual performances for self-produced and passively presented time intervals in random contexts (i.e., multiple target intervals presented in a session) across the sub- and suprasecond ranges (Experiment 1) and within the sub- (Experiment 2) and suprasecond (Experiment 3) ranges, and in a constant context (i.e., a single target interval presented in a session) in the sub- and suprasecond ranges (Experiment 4). We show that self-produced time intervals were perceived as shorter and more variable across the sub- and suprasecond ranges and within the suprasecond range but not within the subsecond range in a random context. In a constant context, the self-produced time intervals were perceived as more variable in the suprasecond range but not in the subsecond range. The impairing effects indicate that motor timing interferes with perceptual timing. The dependence of impairment on temporal contexts suggests multiple timing mechanisms for the subsecond and suprasecond ranges. In addition, violation of the scalar property (i.e., a constant variability to target interval ratio) was observed between the sub- and suprasecond ranges. The violation was clearer for motor timing than for perceptual timing. This suggests that the multiple timing mechanisms for the sub- and suprasecond ranges overlap more for perception than for motor. Moreover, the central tendency effect (i.e., where shorter base intervals are overestimated and longer base intervals are underestimated) disappeared with motor timing within the subsecond range, suggesting multiple subsecond timing system for perception and motor.

Keywords: auditory; body movements; contextual effects; motor timing; subsecond timing; suprasecond timing; time perception; weber fraction.