SnPhPc phthalocyanines with dianion Pc(2-) and radical trianion Pc˙(3-) macrocycles: syntheses, structures, and properties

Dalton Trans. 2016 Jun 28;45(26):10780-8. doi: 10.1039/c6dt01132b.

Abstract

The interaction of Sn(IV)Cl2Pc with an excess of NaBPh4 in the presence of fullerenes C60 and C70 provides complete dissolution of Sn(IV)Cl2Pc and the formation of blue solutions from which the crystals of [SnPhPc(2-)](+)(BPh4)(-)·C6H14 () or [SnPhPc˙(3-)]·C6H4Cl2 () were selectively isolated. According to the optical spectra, salt contains dianionic Pc(2-) macrocycles, whereas macrocycles are reduced to form the Pc˙(3-) radical trianions in . As a result, the phthalocyanine macrocycle is dianionic in , and the positive charge of Sn(IV) is compensated by the Ph(-), Pc(2-), and BPh4(-) anions in this compound. The formally neutral compound contains two anionic species of Ph(-) and Pc˙(3-) and the Sn(IV) ion as the counter cation. Phenyl substituents are linked to the Sn(IV) atoms by the Sn-C(Ph) bonds of 2.098(2) () and 2.105(2) Å () length. The dianionic Pc(2-) macrocycle significantly deviates from planarity in while Pc˙(3-) is planar in . Salt manifests only a weak impurity EPR signal. Compound manifests an intense EPR signal with g = 2.0046 and a linewidth of 0.5 mT at 298 K due to the presence of Pc˙(3-). Spins are weakly antiferromagnetically coupled in the π-stacking [SnPhPc˙(3-)]2 dimers of with a Weiss temperature of -3 K and the estimated magnetic exchange interaction J/kB = -0.23 K.