Effect of high-intensity exercise and high-fat diet on lipid metabolism in the liver of rats

J Exerc Nutrition Biochem. 2015 Dec 31;19(4):289-95. doi: 10.5717/jenb.2015.15122303.

Abstract

Purpose: This study investigated the effects of high-intensity exercise (Ex) and high dietary fat intake on lipid metabolism in the liver of rats.

Methods: Male Sprague-Dawley rats were randomly assigned to one of the four groups (n=10 per group) that were maintained on a normal diet (ND) or high-fat diet (HFD) consisting of 30% fat (w/w), with or without exercise on a treadmill at 30 m/min and 8% grade) for 4 weeks (i.e., ND, ND+Ex, HFD, and HFD+Ex groups).

Results: Body weight (p<.001), total plasma cholesterol (TC) (p<.001), triglyceride (TG) (p<.05), and liver TG levels (p<.05) were increased in the HFD group relative to the ND groups, and serum glucose (p<.05), insulin (p<.05), homeostatic model assessment of insulin resistance (HOMA-IR) (p<.01), and liver TG levels (p<.01) were also higher in the HFD group compared to the ND+Ex group. Plasma free fatty acid was elevated in the HFD+Ex group compared to the HFD group (p<.01). With the exception of acetyl coenzyme A carboxylase, the expression of lipid metabolism-related genes in the liver was altered in the Ex groups compared to the control group (p<.05), with genes involved in lipolysis specifically up regulated in the HFD+Ex group compared to the other groups.

Conclusion: Vigorous exercise may increase glucose utilization and fat oxidation by activating genes in the liver that are associated with lipid metabolism compared to that in animals consuming a HFD without exercise. Therefore, high intensity exercise can be considered to counter the adverse effects of high dietary fat intake.

Keywords: High-fat diet; high-intensity exercise training; lipid metabolism; liver.