Comprehensive Vibrational Spectroscopic Investigation of trans,trans,trans-[Pt(N3)2(OH)2(py)2], a Pt(IV) Diazido Anticancer Prodrug Candidate

Inorg Chem. 2016 Jun 20;55(12):5983-92. doi: 10.1021/acs.inorgchem.6b00476. Epub 2016 Jun 3.

Abstract

We report a detailed study of a promising photoactivatable metal-based anticancer prodrug candidate, trans,trans,trans-[Pt(N3)2(OH)2(py)2] (C1; py = pyridine), using vibrational spectroscopic techniques. Attenuated total reflection Fourier transform infrared (ATR-FTIR), Raman, and synchrotron radiation far-IR (SR-FIR) spectroscopies were applied to obtain highly resolved ligand and Pt-ligand vibrations for C1 and its precursors (trans-[Pt(N3)2(py)2] (C2) and trans-[PtCl2(py)2] (C3)). Distinct IR- and Raman-active vibrational modes were assigned with the aid of density functional theory calculations, and trends in the frequency shifts as a function of changing Pt coordination environment were determined and detailed for the first time. The data provide the ligand and Pt-ligand (azide, hydroxide, pyridine) vibrational signatures for C1 in the mid- and far-IR region, which will provide a basis for the better understanding of the interaction of C1 with biomolecules.

MeSH terms

  • Antineoplastic Agents / chemistry*
  • Organoplatinum Compounds / chemistry*
  • Prodrugs / chemistry*
  • Spectrum Analysis / methods*

Substances

  • Antineoplastic Agents
  • Organoplatinum Compounds
  • Prodrugs