Does the Genotype Have a Significant Effect on the Formation of Intra-Annual Density Fluctuations? A Case Study Using Larix decidua from Northern Poland

Front Plant Sci. 2016 May 20:7:691. doi: 10.3389/fpls.2016.00691. eCollection 2016.

Abstract

Intra-annual density fluctuations (IADFs) can imprint environmental conditions within the growing season and most of the research on IADFs has been focused on their climatic signal. However, to our knowledge, the genetic influence on the frequency and type of IADFs has not been evaluated. To understand if the genotype can affect the formation of IADFs we have used a common garden experiment using eight families of Larix decidua established in two neighboring forest stands in northern Poland. Four types of IADFs were identified using X-ray density profiles: latewood-like cells within earlywood (IADF-type E), latewood-like cells in the transition from early- to latewood (IADF type E+), earlywood-like cells within latewood (IADF-type L), and earlywood-like cells in the border zone between the previous and present annual ring (IADF-type L+). The influence of explanatory variables i.e., families, sites, and years on identified density fluctuations was analyzed using generalized estimating equations (GEE). We hypothesized that trees from different families will differ in terms of frequency and type of IADFs because each family will react to precipitation and temperature in a different way, depending on the origin of those trees. The most frequent fluctuation was E+ and L types on both sites. The most important factors in the formation of IADFs were the site and year, the last one reflecting the variable climatic conditions, with no significant effect of the family. However, the relation between the formation of IADFs and selected climate parameters was different between families. Although, our results did not give a significant effect of the genotype on the formation of IADFs, the different sensitivity to climatic parameters among different families indicate that there is a genetic influence.

Keywords: European larch; G × E; IADF; generalized estimating equations; genetics; wood density.